Task/Subtask IV02.1
CDRL Sequence A014-004
16 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
Using Process to Integrate Software
Engineering Environments

Contract No. F19628-93—-C-0129
Task IV02 — Megaprogramming Transition Support

T 1 6
b 3
.30 & i T
x o V;:’f,u ey P SR
o & B 3
LN 3 S
f
S

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-2116

19950403 125 =

Loral Federal Systems
700 North Frederick Avenue
Gaithersburg, MD 20879

Cleared for Public Release, Distribution is Unlimited

Task/Subtask 1IV02.1
CDRL Sequence A014-004
16 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
Using Process to Integrate Software
Engineering Environments

Contract No. F19628-93-C-0129
Task IV02 — Megaprogramming Transition Support

Accesion For

NTIS CRA&I

. DTIC TAB %
Electronic Systems Center Unannounced O

Air Force Materiel Command, USAF | Justification
Hanscom AFB, MA 01731-2116

Prepared for:

By
Distribution]
Availability Codes
Prepared by:) Avail and/or
P y Dist Special
Loral Federal Systems
700 North Frederick Avenue H«[

Gaithersburg, MD 20879

Form Approved

REPORT DOCUMENTION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, Inciuding the time for reviewing instructions, searching existing data sources, gathering and
faintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefterson Davis Highway, Suite 1204, Ardington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1/16/95 Informal Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Using Process to Integrate Software Engineering Envirommentg

F19628-93-C-0129

6. AUTHOR(S)

Dr. Richard L. Randall, Loral Federal Systems -~ Gaithersburg
William H. Ett, Loral Federal Systems - Gaithersburg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Loral Federal Systems

700 North Frederick Avenue
Gaithersburg, MD 20879 AQl4-004

5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Electronic Systems Center/ENS AGENCY REPORT NUMBER
Air Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for Public Release, Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

A layered architecture is fundamental to the megaprogramming approach being

followed by the Air Force/STARS Demonstration Project, as engineers develop the
Space Command and Control Architectural Infrastructure application for NORAD and
USSPACECOM. This layering strategy also applies to the Software Engineering
Environment (SEE) being used to support the application development. This paper
focuses on one particular SEE layer: a layer that leverages one of an organization's
most valued assets — its process - and uses it as 4 basis for SEE integration. The
activity to produce and use the PSE has yielded useful lessons learned which can
guide other organizations as they pursue their own process—driven SEEs.

14. SUBJECT TERMS 15. NUMBER OF PAGES
66
Software Engineering Environment (SEE), Process, Integration, 16. PRICE CODE
Architecture, Megaprogramming N/A
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

Preface

This document was developed by the Loral Federal Systems - Gaithersburg, located at 700 North
Frederick Avenue, Gaithersburg, MD 20879. Questions or comments should be directed to Dr.
Richard L. Randall at 719-554-6597 (Interncet: randallr & Ifs.loral.com).

This document s approved for release under Distribution “A” of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24).

The contents of this document constitutes technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the
release to third parties whether engaged in performance of a Government contract or subcontract
or otherwise. The Government further disallows any liability for damages incurred as the result of

the dissemination of this information.

Presenters: Dr. Richard Randall, William Ett (Loral Federal Systems)

Title: Using Process to Integrate Software Engineering Environments
Track: 7 - Architectures
Day: Tuesday, 4/11/95, 10:30 AM

Keywords: SEE, Software Engineering Environments, Process, Integration,
Architecture, Megaprogramming

USING PROCESS TO INTEGRATE
SOFTWARE ENGINEERING ENVIRONMENTS

1. INTRODUCTION

Modern software engineering principles call for separating systems into en-
capsulation layers that can be specified, designed, and implemented largely inde-
pendently from one another. Such layers help engineers:

o Gain intellectual control of a system by dividing it into meaningful ab-
stractions,
o Reduce the complexity of building the system by dividing it into separa-

ble pieces that can be built independently by a relatively small number of
specialists (or perhaps procured commercially),

J Maintain the system more economically by localizing the impact of most
changes, and
. Evolve the system more easily by allowing replacement of whole layers

of functionality.

A layered architecture is fundamental to the megaprogramming approach be-
ing followed by the Air Force/STARS Demonstration Project, as engineers develop the
Space Command and Control Architectural Infrastructure application for NORAD and
USSPACECOM. The layering strategy also applies to the software engineering envi-
ronment (SEE) being used to support the application development.

This paper focuses on one particular SEE layer: a layer that leverages one of
an organization's most valued assets - its process - and uses it as a basis for SEE
integration. This layer, termed the Process Support Environment (PSE), conceived by
Loral Federal Systems' on behalf of the STARS program, is being used on the Air
Force/STARS Demonstration Project SEE, in conjunction with a major Air Force priority
to establish and support a megaprogramming product-line process.

! Formerly IBM Federa! Systems Company

The activity to produce and use the PSE has yielded useful lessons learned
which can guide other organizations as they pursue their own process-driven SEEs.
The experience also motivates future productization in this area: a customizable proc-
ess overlay that can be added to orchestrate an organization's existing SEE. The po-
tential exists to add process integration to existing SEEs with modest investment -
largely consisting of well-defined instantiation procedures.

To dramatize the relevance and timeliness of these results, the April, 1994
STSC Report on SEE Technology [STSC94] identified seven key technology areas that
have received insufficient attention to date and in which the industry now seems pos-
tured to make significant progress. Of these seven areas, the top three were process
modeling, process definition, and process enactment and enforcement. The PSE en-
capsulation layer discussed in this paper addresses all three of these areas. The
layer also provides a tailorable metrics instrumentation framework to help the organi-
zation assess and improve their process.

The remainder of the paper is organized as follows:

o Section 2, Context, provides background on the STARS Program and the
Air Force/STARS Demonstration Project;

. Section 3, Process-Based SEE Integration, elaborates the notion of en-
capsulation layers, discusses its relevance to SEE integration, and of-
fers a model of the PSE encapsulation layer,

o Section 4, The Air Force/STARS PSE: Experience To Date, describes
how the Demonstration Project PSE is currently constructed and the ex-
tent to which it adheres to the PSE model provided in Section 3, and
summarizes our experience to date in developing, transitioning, and im-
proving the PSE; and

J Section 5, Conclusion, presents our priorities for continuing the evolution
of both the implementation of the PSE and the underlying ideas.

The reader is invited to refer to a closely related paper also contained in these
proceedings, “Integrating a SEE for Megaprogramming: Lessons Learned”
[Randall95], which discusses the Demonstration Project's SEE integration experi-
ence from a broader perspective.

2. CONTEXT

2.1 THE STARS PROGRAM

The ARPA STARS program is a technology development, integration and tran-
sition program to demonstrate a process-driven, domain specific, reuse-based ap-
proach to software engineering that is supported by appropriate tool and environment
technology - an approach referred to as “megaprogramming’.

Megaprogramming

Megaprogramming is a product-line (family of systems) approach to the crea-
tion and maintenance of software intensive systems. It is characterized by the reuse of

software life-cycle assets within a product-line including common architecture, mod-
els and components. Megaprogramming also includes the definition and enactment
of disciplined processes for the development of applications and the evolution of the
product-line as a whole. Finally, megaprogramming calls for automated support for
the process via advanced software engineering environment (SEE) capabilities and
their integration among those tools. For a more in-depth introduction to the STARS
program and the notions of megaprogramming, please refer to [Trimble94].

Demonstration Projects

The STARS program mission is to accelerate the transition to the megapro-
gramming paradigm. Key vehicles for bringing this about are the three STARS Dem-
onstration Projects - one with each of the three services (Air Force, Amy, and Navy) -
which are currently engaged in applying the principles of megaprogramming to real
systems. The major objectives for each of the projects are:

o Apply megaprogramming principles to the development of software for
an actual DoD application, to establish the credibility of the approach.

o Collect and document experience about the benefits and costs of me-
gaprogramming as well as the effectiveness of the specific tools and
techniques used on the project, to help other organizations plan for and
implement similar approaches.

o Transition to the Demonstration Project's parent organization, to estab-
lish the capability to apply megaprogramming to other applications in
their product-line.

2.2 THE AIR FORCE/STARS DEMONSTRATION PROJECT

The Air Force’s Demonstration Project was identified in 1992: the Space
Command and Contro! Architectural Infrastructure (SCAI) project, to be managed by
AFSPC’s’ Space and Warning Systems Center’ (SWSC) at Peterson AFB, Colorado.
Loral Federal Systems’, one of three STARS prime contractors, was paired with the Air

Force for the project.

The SWSC is responsible for the maintenance of the application software for
the C? centers at the Cheyenne Mountain Air Force Station (CMAS) - which are re-
sponsible for national attack warning/assessment and space surveil-
lance/defense/control. A large number of mission-critical systems are involved, with a
high annual maintenance cost.

2 Air Force Space Command
3 Effective Februrary, 1995, the SWSC is transfering to the Air Force Materiel Command (AFMC) and wilt be known as the Space and

Warning Systems Directorate (SWSD)..
* Formerly IBM Federal Systems Company

The SWSC, determined to apply new software technologies to reduce mainte-
nance costs, had already been working to build up a megaprogramming capability;
and the partnership with STARS was a natural way to accelerate the transition. Table
1 provides a summary of the progress to date on the project - in terms of the three

megaprogramming technology thrusts being pursued by STARS.

Accomplishments since Establishing Activities in Progress
Original SWSC Posture STARS Parinership (as of 1/95)
IBomain— Strong architecture, based Demonstrated viability of architectural approach Developing SCAI Re-

. RICC architectural in- leases 2; specifying Re-
Specific ?rgstmctuzc lecturalin Defined tailored specification standard based on Clean- lease 3 pecifying
Reuse room, MIL-STD 498, and others

Strong emphasis on Open 3 o . Refining product-line ar-
Systems, commercial Completed object-based application models; specified chitectural framework
tools SCAI system and first two SCAI releases
Continuing to develop do-
Domain models under- Developed and tested SCAI Release 1 main models
way
Commitment to Ada
Systematic Understanding of impor- instituted formal approach to process definition, based Nearing completion of
tance of process on STARS/SEI collaboration formal definition of CM
||Process process
SWSC Software Engi- Created a productine process architecture
neering Process Group Beginning formal definition
(SEPG) established Integrated OO, Cleanroom, and the Ada Process Model of Domain Engineering
methods process
Semi-formal process o . .
definition in selected ar- Formally defined processes for Application Engineering Working on second round
eas (AE) of AE specification proc-
Corporate Information Launched a major metrics initiative ess
Management (CIM) IDEF Automated staff hour and defect metrics collection Using automated process
model underway modeling and enactment
support for SCAI Release
. 2and3
lAutomated Commitment to Rational integrated a state-of-the-art open systems SEE: IBM Enhancing the functionality]
{lsupport Ada support product-line and Sun platforms, Rational and TRW toolsets and integration of the proc]
ess tool
Commitment to Universal| installed advanced process support toolset; encoded s 100
Network Architecture and began automated enactment of SCAl Release 2 ang Applying Amadeus to
Services (UNAS), and 3 processes automate collection of SEH
Reusable Integrated age metri
Command C?nter Instituted autormated tracking capability for problems, usage s
(RICC) for Architectural action items, efc. Extending process auto-
tion acro eo hi
Infrastructure Began use of Rational SoDA for automated document r(;na? Ioca?ionss S geograph!
production
Table 1. Air Force Demonstration Project - Megaprogramming

Progress and Status

2.3 DEMONSTRATION PROJECT SEE

The Demonstration Project SEE is composed of approximately 50 worksta-

tions connected to 3 server-class machines. The network is distributed across two
geographical sites (over a high-speed link) and is about evenly divided between Sun
and |BM Unix-based platforms.

The SEE is populated with a set of tools to support the desired end-user func-
tionality, as depicted in Figure 1. The SWSC has committed to the use of Ada for the

application product-line, and has selected the Rational toolset (Apex, Verdix, RCI, Ada
Analyzer, SoDA, and Rose) as a key part of the SEE. In addition, because the applica-
tion architectural strategy is based on a TRW-originated architectural infrastructure,
the SWSC has adopted the corresponding toolset (SALE, RICC Tools) as another key
part of the SEE. The diagram also discloses the organization’s emphasis on process
technology (the Process Modeling, Project Management, Process Enactment, and

Metrics functionality clusters).

RICC Tools
SALE

Rose

... toolSET_certify E

Mail 3
Framemaker ks
Sun Tools

['BMCMVC

Rational CMVC
ProjectCatalyst [
: Process Weaver)}:

CAT/Compass [
PEAKS

wvr——

Figure 1. Demonstration Project SEE: Tool Functionality Groups

Table 2 identifies the supplier of each tool shown in Figure 1. As shown, the
SWSC has selected Rational and TRW as major toolset providers for the Demonstra-
tion Project. Also shown in the table are four tools that have been developed with

STARS support.

Type

Tool Name

Vendor/Developer

Purpose

Rational Ada Development Toolset

Apex Rational Code creation and testing

RCI Rational Interfaces Apex with other Ada
compilers

Rose Rational Obiject oriented analysis and de-
sign

SoDA Rational Automated document generation

VADS Rational Verdix compiler

TRW Architectural Infrastructure Support Toolset

tecture System)

RICC Tools TRW Application display, message,
and database definition

SALE TRW Application network definition
(used with UNAS)

UNAS TRW Application network manager

(Universal

Network Archi-

STARS-Supported Tools

Amadeus Amadeus Software Re- | Metrics repository and analysis
search, Inc.

PEAKS Cedar Creek Process Process modeling, planning, and
Engineering (ccPE) plan simulation

ProjectCatalyst | Software Engineering Low-level process definition and

Technology (SET) process execution
toolSET certify | SET Cleanroom certification testing
support
Other Tools
CAT/Compass | Robbins-Gioia Project management
CMVC 1BM Configuration management and
tracking system
FrameMaker Frame Technology, Inc. Documentation and publication
ProDAT Embedded Computer IDEF-oriented process definition
Resource Support Im-
provement Program
(ESIP), managed by Sac-
ramento/ALC
Process Cap Gemini America Process workflow manager
Weaver
SunTools Sun General office support
Teamwork/IM Cadre Technologies Information modeling
Table 2. Demonstration Project SEE Tool Suppliers

The integration of the SEE tools is accomplished through a combination of
techniques and mechanisms. Control integration (tool invocation and communica-

tion) is provided by

o IBM AIX SDE WorkBench/6000 broadcast messaging service, the Proc-
ess Weaver message service, operating system process services, and
TCP/IP sockets. The WorkBench and operating system process control
provided local service within a user's machine session. Process Weaver
and TCP/IP provided service between users and between machines.

o Data integration is provided by the Oracle Relational Database Man-
agement System (RDBMS) and the operating system file system.

. Presentation and user interface integration is provided by the X Window
System and the Motif window manager.

. Process integration is provided by the STARS-sponsored Process Sup-
port Environment toolset: PEAKS, ProjectCatalyst (in conjunction with
Process Weaver).

3. PRoOcCESs-BASED SEE INTEGRATION

This section elaborates the notion of encapsulation layers, discusses their
relevance to SEE integration, and offers a generic model of the Process Support Envi-
ronment (PSE) encapsulation layer.

3.1 ENCAPSULATION LAYERING AND SEE INTEGRATION

The Importance of Encapsulation Layers in Software System Architecture in Gen-
eral

The importance of encapsulation layers is emphasized in [SchMel92]’. To illus-
trate the notion of layering, consider a system for with a human-machine interface
(HMI) layer which encapsulates the specifics of the operator’s physical interface with
the system (i.e., the display and console interaction). This example can be used to
identify some of the hallmarks of encapsulation layers:

o The essential requirements for the layer are the rules about the system's
usage paradigm plus the application programming interface needed by
the system's higher levels

. The layer is expected to provide an implementation that binds to lower-
level details - in this case, device and operating system characteristics

The power of such encapsulation stems from these characteristics:

o It allows reasoning about the capabilities of the layer with minimal con-
cern about other aspects of the system

5 Schlaer and Mellor use the term “domain” to refer to what we are calling “encapsulation layer”.

) It allows maximum efficiency in applying experts in the layer's domain (in
this case display interfaces)

o It facilitates replacing the layer's implementation (e.g. using new tech-
nologies) with minimal impact to other parts of the system

Architectural Layering in The Demonstration Project Application

On the Air Force/STARS Demonstration Project, architectural layering is viewed
as essential to laying the foundation for a megaprogramming product line. Figure 2
provides a high-level depiction of the architecture being used for the SCAI application.
Note that three major encapsulation layers provide the foundation for all applications
in the future product-line. The lower two layers are off-the-shelf, and the third layer
(architectural infrastructure) provides product-line specific encapsulations for such
services as User Interface, Data Management, and Message Handling. Interested
readers are invited to refer to a more detailed discussion of the SCAIl architecture
found in [Bristow95] and [Bulat95].

Figure 2. Layered Architecture for Demonstration Project Application

Architectural Layering Applied to the SEE

We now move on to discuss how the above general notions about encapsula-
tion layers apply to SEE integration. Table 3 is taken from the current draft of the Air
Force/STARS Demonstration Project Experience Report [DemExp95]. It analyzes sev-
eral architectural characteristics of the Demo Project SEE. Perhaps the most impor-
tant characteristic is the layered architecture: as discussed above, implementation of
each layer can proceed with minimal concern for the specifics of the implementation
of the other layers.

Major Architectural
Characteristics

Example Sub-Categories

SCAI SEE Domain
Implementation Examples

e Layered architecture

Common underlying operating
system environment

Process support environment

Major functionality encapsula-
tions

Unix, TCP/IP, NFS, X

STARS PSE toolset

Rational’s integration family of Ada
support tools (centered around Apex)

TRW'’s integration family of code gen-
eration tools supporting the architec-
tural infrastructure (UNAS, RICC)

e Common user inter-
face

Common window-handling

Common window behavior look
and feel

Motif

Open Interface (from Neuron Data),
Display Builder (from TRW)

o Common program
interface mecha-
nisms

Low-level API| services

High-level data repository serv-
ices

Broadcast Message System (part of
HP’s SoftBench)

TCP/IP Sockets (for guaranteed mes-
sage delivery)

COTS DBMSs (Oracle, Sybase)

e Component reuse

COTS tools

Various

Table 3.

Architecture Characteristics for the SEE Domain

Figure 3 provides a view of SEE architecture in terms of some typical encap-
sulation layers, including the Process Support Environment layer which is the focus of
this paper. The arrows show dependence of one layer on another (i.e., we are not
showing data flow or control flow here).

Figure 3. SEE Encapsulation Layers

9

Encapsulation Layers: A Fundamental SEE Integration Strategy

Just as with other software systems, a SEE integrated using well-engineered
encapsulation layers will exhibit more effective functionality and will be more main-
tainable and evolvable, since:

L Integration within encapsulation layers can take advantage of the knowl-
edge and expertise of a relatively small number of experts, where expe-
rience has shown that tight integration is the most successful.

. Less integration will be needed between distinct encapsulation areas
(simplifying maintenance), and can be restricted to standardized inter-
faces (facilitating replacing a layer with an improved alternative).

Implementing SEE Encapsulation Layers using SEE Integration Mechanisms

It is important to distinguish “encapsulation layers” from another term that is
commonly used in discussions of SEE integration: “integration mechanisms”. An en-
capsulation layer is an encapsulation of functionality, while an integration mechanism
is a means of joining components for the purpose of combining functionality. The
components within a layer may be joined together via integration mechanisms - and,
further, the layer as a whole may be joined with other layers via the same mecha-
nisms.

To implement these encapsulation layers and to interconnect them, integration
mechanisms are used. Here are the most commonly cited integration mechanisms’,
with brief examples for how each is used:

. Control integration mechanisms permit the invocation of a service pro-
vided by another component (perhaps including the launching of an en-
tire application). Such mechanisms include direct calls, sockets, mail-
boxes, and broadcast messaging. Examples of the facilities providing
the latter type of services are Hewlett-Packard's SoftBench’ Broadcast
Message Service (BMS) and Sun's ToolTalk'.

. Presentation integration mechanisms permit the development of appli-
cation wrappers that provide users with a uniform interface for the invo-
cation of SEE applications and services. An excellent example of a
presentation integration service is the one found in HP SoftBench.

. Data integration mechanisms permit application developers to share
common data objects across applications, where each application de-
veloper uses a database or object manager, making the API for these
applications known to other application developers. Data integration
between heterogeneous software application vendors has had limited
success.

® See, e.g, the August 1993 NIST/ECMA reference model for SEE frameworks [NIST93]
"HP SoftBench is a registered trademark of the Hewlett-Packard Corporation.
8ToolTalk is a registered trademark of Sun Microsystems.

) Process integration mechanisms support the coordinated use of the
SEE’s other integration mechanisms (control integration, data integra-
tion and presentation integration mechanisms) to support the execution
of work steps within an automated process sequence (or task).

Figure 4 illustrates the use of a process integration mechanism to bind
a conceptual representation of a process segment, shown at the top of
the figure, to specific SEE services and data - using control, data and
presentation integration services.

Start Return

Step 1
Prepare
Stimulus/
Response

Black Box
Specification

Step 3:

Validate
Biack Box
Specification

His

‘Prooess Progr

Fhcodens Process progra

Display
Assignment
& Instructiol

Request/Retrieve
Task instrustions

Display Task

Start Time .
tnstructions

PSE Boundary s====s=====

Post Task
Start Timgf Display TasH
instructions

Request/RetrieN
Task Instrustion

ask Instructions Task Instructions

y \
Software
Engineer

Figure 4. Supporting a Task via Process Integration (1 of 2)

The conceptual view is translated into a process program view, shown in
the middle of the figure, in which process engineers have arranged for a
new step to be executed: “Display Assignment of Instructions”. This new
step, which only makes sense when the process segment is supported
by the PSE, posts the task start time to a measurement database and
causes detailed process enactment description information to be auto-
matically displayed to the practitioner.

This process program is executed by a “workflow engine”, which uses
an encoded representation of process sequencing to progress through

11

the steps. Associated with such an engine are process programming
facilities that allow process engineers to bind each step to SEE artifacts
and tools. The workflow engine thus provides the facilities to implement
process integration.

As shown in Figure 4, the execution of the first step involves the use of
the three other integration mechanisms to record the prescribed meas-
urement data and to display the process instruction data.

Figure 5 is a continuation of this same example, showing how a later
step, “Define Black Box Specification” is supported.

Start Retum

tep 1:
Prepare
Stimulus/
Response
History

Instructions

) LA S I G R
- | Request/Retrieve
fack Box Black Box Templates

Editor

Process

Invoke
Black Box
Editor

Request/Retrieve
Black Box Template:

i)

Editing Software
Changes Engineer

pdate:
Black Box
Spec

Figure 5. Supporting a Task via Process Integration (2 of 2)

This step is implemented by using a Control Integration Mechanism to
invoke an editor, and a Data Integration Mechanism to retrieve the proj-
ect's standard template for black boxes.

Examples of commercial products that provide process integration
- p - -
services - also referred to as workflow automation services - are HP
Synervision’, Process Weaver”, FlowMark™ and InConcert”.

HP Synervision is a registered trademark of the Hewlett-Packard Corporation.
°process Weaver is a registered trademark of Cap Gemini Innovation.

12

Please refer to Section 4.3, Lessons Learned, starting on page 23, for a dis-
cussion of some of our experiences in applying SEE integration mechanisms.

3.2 THE PROCESS SUPPORT ENVIRONMENT ENCAPSULATION LAYER

The foregoing discussion has developed the importance of encapsulation lay-
ers to SEE integration. The remainder of this paper focuses on one particular encap-
sulation layer: the Process Support Environment (PSE) layer. The authors’ contention
is that this layer is one of the most vital SEE integration priorities, because it directly
joins the organization’s process to the SEE that supports it. As will be shown, use of a
PSE can not only tie the SEE’s functionality together for the end-user, it can also keep
the process alive - and improving - by making it part of every user's routine use of the
SEE. This dual integration strategy is illustrated in Figure 6.

Process

Engineer Software Engineering Environment

. . W;: o -1
Organization’ PR
Process < .
Process-Driven

SEE Functionality

Tool, Aftifact

Bindihgs
Engineer I ——— S End Use.r
Figure 6. Process Support Environment Encapsulation Layer

Conceptually, instantiation of the process integration layer proceeds via a
"lamination" procedure: the process and metrics requirements are added to the top,
and the tool interface provisions are added to the bottom. The result is an encapsu-
lated SEE integration layer that joins process to SEE.

A list of criteria for recognizing encapsulation layers was provided on page 7.
As shown by the following analysis, the PSE encapsulation layer seems to fit the
mold:

o The essential requirements are provided by the process, since the ob-
jective of the SEE is to support the organization in carrying out its proc-
ess

" FlowMark is a registered trademark of the 1BM Corporation.
2|nConcert is a registered trademark of the Xerox Corporation.

The "API" with the system's "higher levels" are the user interfaces:
- For process engineers, to define and model the process
- For managers, to plan a project based on the process

- For practitioners, to camy out their work in the context of the proc-
ess

- For all users (including the above), to assess how well the proc-
ess is working and to pursue high-payoff avenues for process
improvement

The organization can reason about the process integration layer with
minimal concern for the specifics of the rest of the SEE

The implementation of the layer is performed by process technology ex-
perts that are intimately familiar with state-of-the-art process thinking,
available process tools, and SEE integration techniques

Customization provisions allow organizations to modify other aspects of
the SEE - such as changing compilers or text processing toolsets - with
minimal perturbation to the layer or its users.

3.3 ALOOK INSIDE THE PROCESS SUPPORT ENVIRONMENT

This subsection provides a model of how such a Process Support Environment
(PSE) might be constructed. The model will provide the basis for our discussion of
the Demonstration Project PSE, and it will also assist in comparing and contrasting
our approach with that of others.

3.3.1 PSE Requirements

Our view of the PSE’s structure is motivated by the following general require-

ments.

The PSE should:

Provide process automation options ranging from guidance to complete
automation; the degree of process automation is always the organiza-
tion’s prerogative.

Allow incremental process definition, implementation, and improvement.
Support process definition via graphical modeling as well as conven-
tional documentation. Preferably, the modeling syntax should be geared

to describing process and the semantics should permit consistency
checking.

Support “process-driven project management”. By this we mean:

- Allow project plans to be developed and evolved in the context of
the organization’s process. Allow project managers to identify the
process basis for planned project activities.

— Allow management control to be tied to the process-driven plan.
Managers and task leads should have the ability to discern the
process context of the activities they are coordinating.

— Allow status monitoring to be automatically tied to process execu-
tion. Managers and task leads should be assured that milestones
are reached via the defined process - including the successful
completion of any predefined validations.

We regard management support capabilities to be part of the PSE be-
cause of the intimate relationship between process and management.

o Support automated assistance of process execution, providing process
guidance, facilitating artifact navigation and tool usage, and enforcing
conformance to process-defined standards in as unobtrusive a fashion

as possible.

. Support measurement capture during the course of process execution,
automatically where possible.

o Support metrics analysis, based on the above process-driven meas-
urements as well as other means (e.g., analysis of source code), as a
key ingredient of process improvement and technology transition.

The current Demonstration Project PSE partially satisfies all of the above re-
guirements.

3.3.2 PSE Structure

Figure 7 provides a abstract view of the PSE (the shaded regions of the figure),
showing its internal structure and its relationship to the rest of the SEE. The figure
identifies several distinct capability sets within the PSE:

. Process modeling

o Project planning, monitoring and control
o Process performance management

. Task execution

o Process improvement analysis

Figure 7 also shows the PSE layer using services in the other encapsulation
layers shown on Figure 3 on page 9, namely:

o SEE tools and services (e.g., compilers, object-oriented modeling tools,
etc.)

o Measurement collection services for posting, storing and retrieving
measurement data

o Artifact management services for accessing and storing artifacts and
information about artifacts - including configuration management.

o Human/machine interface services (not explicitly shown in the figure).

Project/
Technical
Management

Process
Engineer

Task Lead

Task/Status

Project
Practitioner

Artifacts and
Artifact Stated

e

Process
Engineer

Data to support process improvement

Figure 7. Process Support Environment: Structure and Interfaces

3.3.3 Description of PSE Capability Sets

Process Modeling (PM) Capability Set

This set provides process engineers with the tools necessary to define the or-
ganization’s process, comprising:

. An architecture for the process, describing all of its components and
their relationships

o The flow of artifacts within a process and its components (data flow)

o A constrained process activity network suitable for supporting project
planning

. The control flow and control structure of activities within a process and
its components (process/process component control structure)

. The composition and description of the artifacts involved in the process

. The quality characteristics established for each artifact the project is to
produce and the completion criteria each artifact must satisfy

. The resource types required to support each identified activity

o A description of each process component, such that each process com-
ponent has sufficient information available for its user to manually per-
form it.

Process specifications that are defined and tailored using the PSE's process
modeling capabilities are maintained in a process asset library for use by current and
future projects.

The process specifications prepared and adopted to support a project, become
a key ingredient in the planning, design and implementation of process programs. A
process program is a program designed to provide assistance to SEE users in fol-
lowing a defined process, as they perform their project work.

Project Planning, Monitoring and Control (PPMC) Capability Set

This set supports project and technical managers working with process engi-
neers to initially plan software development projects. Further, once these projects are
initiated, this capability set provides support to project and technical managers who
monitor and control the project.

The PPMC Capability Set provides support for planning software development
projects by providing the following capabilities:

o Automatic project plan instantiation from process specifications that pro-
vide the constrained activity flow for the project

o Analysis of proposed project plans for cost and schedule reasonable-
ness.

The PPMC Capability Set provides support for process component delegation
to technical management and their task leaders to address how they plan to satisfy
the objectives of a delegated process.

Once a project is initiated and processes have been delegated for detailed
planning and management, the PPMC Capability Set provides support for monitoring
and controlling the project though the following capabilities:

17

o Automatic posting of project status and events for weekly, bi-monthly and
monthly project status report generation and analysis

o Programmable project exception reporting on selected project events,
e.g. schedule anomalies, cost anomalies, resource anomalies, etc.

. Support for project replanning, upon process conditions requiring the
project schedule to be revised, e.g. review failures, earned value prob-
lems, etc.

Project activity and process state information is kept in a persistent object store
for use in supporting report generation and automated event recognition.

Process Performance Management (PPM) Capability Set

This set supports technical managers and task leaders who plan and manage
the detailed tasking necessary to address the specific requirements of a delegated
process. As processes are not intended to dictate how technical work will be per-
formed, technical managers and task leaders must plan the tasks they feel are nec-
essary to achieve expected results and to coordinate these activities with their techni-
cal team.

The PPM Capability Set provides a process/task planning and management
spreadsheet for use in defining and coordinating lower level processes and the tasks
necessary to satisfy them. This spreadsheet provides the following capabilities:

o Low level process definition (processes below those of the ones defined
in the project plan)

o Task planning to support the requirements of a delegated process

o Process delegation and tracking

. Task assignment, dispatching and tracking.

The process/task planning and management spreadsheet displays an over-
view of every process task, and as work proceeds and project milestones and proc-
ess events occur, the spreadsheet is updated to reflect these changes. Detailed in-
formation is summarized for automatic reporting to support the PPMC Capability Set.

Project task state information is kept in a persistent object store to support the
summarization of detailed data for use in supporting report generation and automated
event recognition. Project artifact state information is also kept in a persistent object
store to provide information for the PPM Capability Set about artifacts that exist and
their usage, completeness and version status.

It is at the PPM Capability Set level that requirements for designing and imple-
menting process programs must be made. Process programs may either be custom
crafted for each process in the project's process architecture, or generic process pro-
grams may be prepared to support activity classes. The PPM Capability is responsi-
ble for dispatching tasks for project personnel to perform. This task dispatching in-

volves the invocation of a process program to support project personnel in performing
their assigned task.

Task Execution Support (TE) Capability Set

This set supports project personnel in performing their work tasks, and pro-
vides task status information to the PPM Capability Set to support its mission of task
tracking. It includes a workflow engine programs (process integration mechanism)
for executing low-level process programs. The engine uses other SEE integration
mechanisms (e.g., control, data, and presentation mechanisms) to interface with
services external to the PSE layer. For example, a process program may automati-
cally invoke a SEE tool, and a few steps later, request a measurement engine agent
to post a process measurement.

The TE Capability Set may be implemented according to one or more automa-
tion paradigms:

o Passive support for project personnel, through the use of electronic mail
and a hypertext description of the process currently being performed.

. Complete automation, where shell scripts (or canned procedures) are
launched based on a SEE or process event.

o Proactive work flow management, involving both a human and the
SEE. In this instance, work is assisted by an engine that provides con-
venient access to the appropriate tools and data - and provides guid-
ance to support the practitioner’s performance of task steps.

Since the latter automation paradigm is the most general capability (a coordinated
mix of human and SEE activities) we will assume PSE capabilities include a proac-
tive work flow execution support, employing a work flow engine, such as Process
Weaver or InConcert.

When a task is dispatched by the PPM Capability, a process program to sup-
port that task begins its execution. Each process program includes a set of work
steps that a task performer must accomplish. These work steps are made available
to the task performer, based on the process program's control structure. Thus the
process program, using the work flow engine, manages a dispatched task through to
its completion. Process programs may be instrumented to provide automated meas-
urements and validation steps:

o Task start and completion times can be automatically recorded, as well
as task accumulated elapsed and environment usage time. This in-
strumentation is typically done by interfacing with a measurement en-
gine, where measurement collection agents are invoked to collect and
store the require measurement.

o Product reviews can be facilitated, by prompting with prescribed ques-
tions about the quality of an artifact that an engineer produced.

19

To increase the level of support, TE can provide automated launching of tools
against the key artifacts being consumed and produced by the task. To accommodate
this, a binding strategy must be implemented within the PSE, as indicated in Figure 8.
Such binding can allow TE to simplify the practitioner’s work by eliminating the need
to navigate to the proper artifact and invoke the appropriate tool for it.

* 9
. [}

LY
\ Tool Igvacation ’ T~ oA P .
{emem=s TE's Use of - ~ Actuas Artifact IDss
il Artifact and Tool \ Mgihods _#” ‘. B "
Binding \ 7 N

Figure 8. Binding Process Programs to SEE Artifacts and Tools

Global and local task state information is maintained in a persistent object
store for the work flow engine to support task execution, intertask synchronization,
task redirection, or task suspension. TE also maintains artifact state information to
support task execution, intertask synchronization and task suspension.

Process Improvement Analysis (PIA) Capability Set

This set provides process engineers with access to the tools and resources to
support both quantitative and qualitative analysis of process performance data and
product quality data. Process engineers employ many techniques to support process
improvement from reviewing the comments of process practitioners (project person-
nel who follow processes) to statistical analysis of data collected by the PSE Capa-
bilities and the Measurement Collection Capabilities. Process engineers may em-
ploy statistical analysis tools to analyze process performance and project quality data
to analyze performance times and defect ratios against existing norms. Further, using
measurement data collected during process execution, metrics may be computed to
support process improvement analyses. Typical PIA Capabilities include:

. Statistical analysis support for trend analysis and curve fitting

20

. Control chart preparation and analysis

o Problem cause and effect analysis.

3.4 RELATED WORK

We have provided an appendix to the paper, “History of PSE Evolution”, starting
on page 34, to provide additional background to interested readers. The appendix
discusses three antecedent PSEs developed under the Loral Federal Systems
STARS contract, as well as a contrasting PSE under development on the Arcadia
project. The PSEs are all analyzed in the context of the model of PSE structure and

interfaces illustrated in Figure 7 on page 16.

4. THE AIR FORCE/STARS PSE: EXPERIENCE TO DATE

4.1 PSE DESCRIPTION

Figure 9 illustrates the current Demonstration Project PSE. The diagram
shows how the major PSE model components work together to support the process
definition/planning/performance/improvement cycle.

trics / TOCEss
[Improvement
Analysg ;

| Amadeus

Labor, Schedule Méi

Tool Usage Metrics

Process Performance
e Management

Manual

Key:
Automated Support

Figure 9. An Operational View of The Demonstration Project PSE

Process definition and modeling are supported by ProDAT, for activity model-
ing, and by the STARS-sponsored Process Engineering and Kernel System
(PEAKS"™), for work flow. These tools are being used by the Demonstration Project
team to capture and analyze process in a form consistent with the STARS/SEI Proc-
ess Definition Information Organizer Templates.

Process-driven project management is supported by PEAKS, which builds
project plans directly from the process and allows management to apply resources
and schedule constraints - as well as to simulate the impact of process modifications

and quality failure probabilities.

Process enactment is supported by the STARS-sponsored ProjectCatalyst, and
Cap Gemini's Process Weaver. ProjectCatalyst receives enactment specifics from
PEAKS and allows task leads to manage the team's activities to follow the process-
driven plan. Based on the project's customization information, ProjectCatalyst auto-
matically instantiates Process Weaver process used by the practitioners to launch the
appropriate tools for creating and manipulating the desired artifacts. As work actions
are taken (starts and completions), ProjectCatalyst reports task completion date and
effort to PEAKS, so that management can always obtain an accurate data concerning
task and project status.

Measurement collection and metric computation is supported by both PEAKS
and Amadeus. PEAKS automatically captures measurement data about the work as it
progresses, thanks to the ProjectCatalyst reporting discussed above, and it provides
relational calculus query capability to compute statistics. PEAKS also gathers pre-
specified quality metrics (such as code complexity), which can be interpreted in the
context of one or more quality frameworks adopted by the project (such as the RADC
Quality Framework). Amadeus provides a repository for capturing arbitrary metrics
data, together with a set of analysis and reporting aids.

4.2 HiSTORYAND CURRENT STATUS OF THE PSE

The STARS components of the Demonstration Project PSE (PEAKS and Pro-
jectCatalyst) were introduced in late 1993 and early 1994. A major pilot was con-
ducted in March of 1994, and based on the results of the pilot, the project began use
of these tools for the SCA! Release 2 Specification activity. Both the pilot and the op-
erational use of these tools provided substantial practical experience on both the
specific implementation of the tools and the process-driven paradigm supported by
them. The main problems that emerged were:

o The toolset was not sufficiently stable to support production work;

o PEAKS and ProjectCatalyst were not fully integrated, resulting in redun-
dant manual work to translate PEAKS models to ProjectCatalyst process

performance pages;

13 PEAKS is the commercial name chosen by ccPE for the STARS-supported process modeling facility formerty known as Software Proc-
ess Management System (SPMS). Since the name change is quite recent, most STARS publications, including [DemExp95] use the

SPMS name.

. ProjectCatalyst tool and database administration was excessively com-
plicated; and
o The ProjectCatalyst implementation of the “State Data Repository”
(SDR), originally designed to support text files, was not sufficient for the
project's heterogeneous artifact types or its configuration management
requirements.
These problems were largely due to the unprecedented nature of the usage
paradigm being supported by the tools, and a resulting under estimation in the com-
plexity of the required software.

Despite the problems, the project decided that there was sufficient promise in
the toolset to plan a major upgrade. The upgrade, targeting all but the last of the
above problems, was delivered on schedule in November, 1994, and is now being
used for the SCAI Release 3 Application Engineering Specification activity. The fourth
problem - the need to provide a more mature artifact management capability - re-
mains a future objective.

During this same period, an affiliated team, funded by the Air Force’'s Sacra-
mento/ALC EISE program at Sacramento, California, was conducting a feasibility
study on the development of a tool to support both IDEF, activity-based process mod-
eling and IDEFx data modeling. This work yielded the ProDAT tool, based on the
VSF" engine. After conducting a pilot of ProDAT in September, 1994, the project de-
cided to use ProDAT in place of DesignIDEF and Framemaker, to reduce the com-
plexity of assembling IDEF-based process descriptions, from a tool with a single da-
tabase, as opposed to the more manual intensive approach that was being em-
ployed.

Figure 9, on page 21, depicts the PSE in use on the Demonstration Project as
of this writing.

4.3 LESSONS LEARNED

The lessons presented in this section are derived from roughly five years of ex-

‘perience in studying process and process automation technology, and piloting a suc-

cession of Process Support Environments (PSEs).
. Building a Process Support Environment is an ambitious undertaking.

We underestimated the difficulty in building and transitioning the STARS
portion of the Demonstration Project PSE (PEAKS and ProjectCata-
lyst/Process Weaver).

In retrospect, there are several reasons for the underestimation:
- Despite prior experience with PSE antecedents (refer to the Ap-

pendix to this paper), the usage paradigms and ingredient tech-
nologies were still largely unprecedented.

' virtual Software Factory (VSF), provided by VSF, Inc., is a tool specifically designed for developing graphically-oriented computer-aided
software engineering (CASE) tools.

- Prior experience (e.g., with the Cleanroom Engineering Process
Assistant®) was in simpler usage environments and with a
smaller user population. The Demonstration Project SEE re-
quirements were more complex than envisioned, due to such
factors as the heterogeneous hardware and software environ-
ment and use of multiple SEE frameworks.

- Work prior to the identification of Loral's Demonstration Project
partner was geared to the Cleanroom software engineering proc-
ess - which had already been specified, tooled, and piloted with
predecessor PSEs. Although the new organization decided to in-
corporate Cleanroom principles in their process, it turned out that
most of the prior work had to be rethought.

This factor relates to a larger project-level lesson learned cited in
[DemExp95]: a project must work out its own product-line process
- organizations will seldom be able to use an off-the-shelf proc-
ess defined by another party.

. Attempting to make a large number of significant approach changes
on a project can impede the progress made in any one area.

This is another example, cited in [DemExp95], where larger project-level
issues affected work in the SEE area. The Demonstration Project as a
whole had very ambitious technology objectives, resulting in simultane-
ous development of basic approaches on several fronts at once, includ-
ing:

- Process definition methodology,

- Process content (numerous advanced processes are targeted by
the SWSC, including domain engineering, product-line configura-
tion management, metrics, etc.), and

— Process automation.

Adding to these approach issues were the engineering issues associ-
ated with building the SCAI application itself. Although the project has
done remarkably well at synthesizing a promising approach in nearly all
of these areas, each one of them suffered to some extent from un-
knowns and variables - as well as from competition for intellectual en-

ergy.
o Transitioning to a significantly new approach requires an incremental
strategy.

Another lesson we re-learned was that of technology transfer tech-
niques. When it comes to radical new ideas, such as process-driven

' Cleanroom Engineering Process Assistant; described in the Appendix on page 34.

24

development, baby step introduction of new technology, followed by suc-
cessful technology use is far better than trying to introduce too much
technology, too soon. Once this approach was taken, technology intro-
duction and adoption was greatly facilitated. Performing pilot products to
permit a customer to gain experience with a new technology is vital to the
adoption process.

o There are additional SEE integration challenges to be addressed to
improve the practicality of a PSE.

While we expect the PSE concept to pay rich rewards in the fong-haul,
there are some integration challenges ahead. We believe the following
process integration lessons - and the experience upon which they are
based - represent one of the most significant results of the investment in
process technology made by both STARS and the Demonstration Project

organization.

- Differences between platforms, sometimes quite subtle, can
complicate integration.

For example, one of our integration problems was the control and
data integration of PEAKS and CAT/Compass” . A message set
was carefully planned to support data exchange between PEAKS
and CAT/Compass. The testing of the individual message sets
against the two tools was also successful. However, the control
integration mechanisms tailored on one environment (SUN UNIX)
exhibited different behavior on the other (IBM AIX). Problems in
permitting full message exchange between these two tools were
never fully resolved.

- Integrating a new tool as a means of gaining “off-the-shelf”
technology is often more complicated than anticipated.

As an example, we sought to integrate a commercial project
management package with PEAKS so that we could realize
“process-driven planning” without implementing planning
functionality in PEAKS. We soon found that we had to define a
faily complex interface specification, because the tools’
perceptions of apparently similar data turned out to be quite
dissimilar when examined in detail.

- The “multiple database problem” is a pervasive integration is-
sue.

First, if two related tools are left un-integrated, the user is forced to
manually keep the respective databases in agreement. Since this
can be a formidable challenge, one or the other database is likely

8 CAT/Compass is a management planning package from Robbins-Gioia. CAT and CAT/Compass are registered trademarks of Robbins-
Gioia, Inc. of Alexandria, Virginia

to fall behind, diminishing or nullifying the value of the associated
tool. Second, when integrating two tools with overlapping
functionality, each side must understand the other's database so
that they can formulate a strategy for keeping each other’s data in
sync. Third, given that integrating the two tools is feasible, careful
design is needed to be sure no messages are lost.

Integrating separately developed process support tools can in-
volve modeling paradigm issues as well as SEE integration is-
sues.

In view of the prior lesson, the Demonstration Project would
ultimately like to smoothly integrate all of the PSE capabilities
depicted in Figure 9 on page 21. One of the key issues in
achieving this integration is the differing modeling points of view
taken by the tools.

The Air Force is mandated to use the IDEF, notation for activity
modeling, and the SCAl project opted at the outset to use
MetaSoft's DesignIDEF tool for developing its process framework
model. Unfortunately, despite its strength for understanding
activity relationships, IDEF, is not sufficient for specifying
enactable processes, because it is not capable of specifying
constrained activity flow and control.

PEAKS, part of the STARS toolset, does model constrained activity
flow and control, but does not have an IDEF, view. Thus, the
objective of integrating the two databases was thwarted not only
by tool issues, but more importantly, modeling paradigm issues.

Although this remains a long-range issue, two improvements are
already underway. The first is the conceptual integration of the
IDEF, view into a consistent enactable process specification in
the STARS/SEI Process Definition Information Organizer
Templates, worked out in cooperation with the Demonstration
Project [Ett3-94].

The second is the transition to a new prototype |IDEF-based
modeling tool called ProDAT. ProDAT first integrates IDEF, activity
modeling with IDEFx information modeling. It then adds a new
artifact state transition modeling view and uses the new view to
generate process sequencing.

Assuming the new ProDAT paradigm proves productive for the
Demonstration Project, it may be possible to pursue tool
integration between ProDAT and PEAKS.

Message-based control integration services require careful
design to assure key data is not lost.

For control integration among PSE components, we chose to use
broadcast message server capabilities provided in IBM AIX SDE
Workbench. The BMS metaphor is that a sender places a
message on a software bus and one or more listeners hear the
message and take appropriate action.

A central precept of process integration is that information used to
support process control decisions must not be lost.
Implementing PSE integration using BMS proved to require more
engineering than expected, because message delivery is not
assured. Use of BMS for process control requires considerable
attention to such protocol issues as assured start up of listeners,
handshaking, and error recovery. Redesign of our integration has
led to a much more robust interface, but the potential still exists
for message loss.

There were other limitations in Workbench that surfaced during
the SEE integration effort. For example, communication between
tools was supported only within a single user session. We took
advantage of Process Weaver's inter-user messaging capability
to help offset this problem.

The IBM Workbench product is an implementation of the Hewlett-
Packard Broadcast Message Server (BMS) technology. We believe
many of the Workbench limitations were the result of the lagging
implementation of BMS improvements.

The emerging standard for SEE integration messaging is found in
Sun’s ToolTalk. This technology is part of the emerging industry
standard referred to as the Common Desktop Environment
(CDE). All the major environment platform vendors (Sun, Hewlett-
- Packard, IBM, Digital, and others) have agreed to provide CDE
compliant products with their platforms. Future releases of AX
should provide an implementation of BMS (through ToolTalk) that
will ease most of the limitations that we encountered.

Data integration is impeded by toolsets that provide monolithic
artifact management functions.

In today’s market, most toolsets that provide large amounts of
functionality often perform self-contained artifact management -
from their own points of view. In part, this stems from the
absence of agreed-upon standards for common artifact
management. The resulting mismatches make it difficult to
implement a coherent artifact management encapsulation layer
(as shown in the conceptual model of the SEE in Figure 3, on
page 9). On the Demonstration Project, ProjectCatalyst was
delivered with a self-contained “State Data Repository” (SDR),
which both stored artifacts and maintained artifact states from a

27

process point of view. Rational Apex, used for Ada code
development, manages its own artifacts, greatly enhancing its
performance due to its detailed understanding of Ada semantics.
Apex also implemented a much more sophisticated Configuration
Management strategy than the SDR. Finally, the project selected
IBM CMVC for its general-purpose CM solution, since it provided
problem tracking capability, which Apex lacked. The net is that
there are three artifact management methods available on the
SEE. Currently, the project has decided to avoid use of the SDR
entirely, and it is working on a locally written integration between
CMVC and Apex.

Ultimately, as discussed out in [Randall89], what is needed is a
general-purpose artifact management repository for the SEE -
together with a standardized APl - so that projects could replace
one repository implementation with another as better solutions
appeared. This is an active area of R&D, and no agreed upon
approach has emerged. In the meantime there seem to be only
two solutions for toolset vendors: continue to pursue independent
monolithic implementations, or define a minimum essential API
for an abstract repository and attempt to adapt one or more
commercially available repositories to that API.

— Process state management should ultimately be handled by a
central SEE server.

Our experience has shown us that ideally, process state should
be managed by a server that all process support tools may
access, and selected tools may update. The concept of the
process server was also independently arrived at by the Arcadia
project [Heimbigner95]. - Failing an effective process server, a
single tool should ideally manage and provide process state data
to all requesting tools.

. Generic instantiation techniques can greatly reduce the need for
process programming.

The PSE evolution work leading to the LORAL STARS PSE toolset
(described in appendix A) brought forth the idea of an adaptable process
support environment layer with a defined set of APIs that could be easily
interfaced to employ SEE integration mechanisms. In terms of the PSE
model shown in Figure 7, on page 16, these innovations apply to the in-
terface between the Tactical Planning/Coordination (TPC) and the Task
Execution (TE) capability sets. In the case of the STARS toolset, TPC
capabilities are provided by ProjectCatalyst and TE capabilities are pro-
vided by Process Weaver.

Our approach to instantiating this interface required:

28

- The identification of a small set of generic process programs that
support individual or collaborative activities that can be instanti-
ated from planned tasks. One of the clear successes from our
work is the recognition that all processes have common charac-
teristics which permits the development and instantiation of ge-
neric process programs. These generic process programs were
derived from a generic architecture for process enactment.[ETT2-
94]. We have effectively used this concept to dramatically reduce
our need to develop customized process programs. In fact, in our
use of a generic architecture to support process enactment, we
have employed one of the key concepts of megaprogramming by
16specifying a product line of process programs for use by the
Task Execution Support capability of the PSE layer.

- The development of systematic techniques for binding SEE tools
and services to a process program at task execution time, rather
than in an off-line build procedure.

o A Process Support Environment is a powerful SEE integration vehi-
cle.

The main thesis of this paper is that a PSE is one of the most useful
SEE integration vehicles, since two forms of integration are simultane-
ously at work: integration of the organization’s process with the SEE, and
integration of tools and artifacts within the context of the process.

5. CONCLUSION

We contend that it is becoming increasingly important for organizations - par-
ticularly megaprogramming organizations - to think of process and SEE as intimately
tied. With the collaboration with the Air Force Demonstration Project team, we have
gained valuable experience in integrating process and SEE and have identified a po-
tentially profound SEE abstraction layer - the Process Support Environment - which
has been the focus of this paper.

Section 3, Process-Based SEE Integration, presented the motivation for the
PSE and provided a model for its structure and interfaces. The model identifies five
cooperating “capability sets” within a PSE:

- Process Modeling;
- Project Planning, Monitoring and Control;
- Tactical Planning/Coordination;

- Task Execution; and

— Process Improvement Analysis.

Our work has provided experience in implementing and integrating each of these ca-

pability sets.

We also believe that our experience has yielded many pragmatic lessons
learned that should prove useful to others pursuing process and SEE integration.
Many of these lessons are cited in Section 4.3 of this paper.

Our priorities for future work are:

Refine our model for the PSE layer (see Section 3.3, on page 14) as well
as the approaches for applying SEE framework services to implement
the layer.

Develop minimum essential APIs for general-purpose artifact manage-
ment and process state management repositories, and assess the vi-
ability of adapting current repository methods to serve these APls.

Continue to collaborate with both process and SEE researchers and
practitioners, to help accelerate the convergence of the two disciplines.

Continue to work with the Air Force to help them achieve the Demonstra-
tion Project’s objectives and to capture experience. Specifically:

- Actively participate in the “Process Engineering Support Team”,
designed to support the process users in following and improving
the defined process - as well as to evolve the project’s use of PSE
automation capabilities;

- Assist with the definition, instrumentation, and analysis of meas-
urements to support process improvement; and

- Make further improvements to existing PSE capabilities as fund-
ing permits.

Continue to review process automation progress by other projects and
commercial vendors.

Participate in standardization efforts currently being pursued by industry
groups, such as the Work Flow Management Coalition, to establish a
reference model and APl description for process work flow engines -
described in this paper as the Task Execution Capability Set (see page
19).

30

[Bristow95]

[Bulat95]

[DemExp95]

[Ett-92]

[Ett1-94]

[Ett2-94]

[Ett3-94]

[Heimbigner95]

[NGCR93]

[NIST93]

REFERENCES

Bristow D.J., Bulat R.G., Burton R. Product Line Process
Development, Proceedings Seventh Annual Software Tech-
nology Conference, Salt Lake City, UT, April 1995. (Published
simultaneously with the present paper)

Bulat R.G. Space and Warning Systems Center Domain
Engineering Experiences, Proceedings Seventh Annual
Software Technology Conference, Salt Lake City, UT, April
1995. (Published simultaneously with the present paper)
Air Force/STARS Demonstration Project Experience Re-
port, Version 2.0 (Draft), CDRL Sequence A01 1-002D,
Electronic Systems Center, AFMC, USAF, December 1994
(currently under review by the Government).

Ett, W.H., R.H. Cobb, A. Kouchakdjian, Cleanroom Software
Process Case Study: Lessons Learned from STARS Task
IS-15, IBM FSC Technical Report 85.0165, IBM Federal Sys-
tems Company, Gaithersburg, MD, June 26, 1992.

Ett, W.H., S. Becker, Evaluating the Effectiveness of Proc-
ess Weaver as a Process Management Tool: A Case
Study, Proceedings of the Third Symposium of Assessment
of Quality Software Development Tools, Washington, D.C,
June 7-9, 1994.

Ett, W.H, R.H. Cobb, A. Kouchakdjian, Lowering the Entry
Barrier to Process Execution Support, Loral Federal Sys-
tems Internal Report, Gaithersburg, MD, October, 20, 1994.
Ett, W.H, Phillips, R.W. SCAI Process Definition Training
Package, Feb 1994, (available from the authors).
Heimbigner, D., ProcessWall Process State Server,
Demonstration Abstracts, ARPA Software Environments
Technology Conference, Arlington, Virginia, January 5-6,
1995.

Reference Model for Project Support Environments, Ver-
sion 2.0 (Draft), Next Generation Computer Resources, 2
September 1993.

NIST Special Publication 500-211, Reference Model for
Frameworks of Software Engineering Environments
(Technical Report ECMA TR/55, 3rd ed.), National Institute of
Standards and Technology, August 1993.

[Randall89]

[Randall95]

[STSCY94]

[SchMel92]

[Sutton94]
[Trimblie94]

[Young91]

Randall R.L. xXSPER - An Approach for Generating Extensi-
ble Integrated Project Support Environments, PhD Dis-
sertation, University of California, San Diego, April 1989.
Randall R.L., Ekman R.G., Kent S.P. (Capt. USAF), Turner
G.S. Integrating a SEE for Megaprogramming: Lessons
Learned, Proceedings Seventh Annual Software Technology
Conference, Salt Lake City, UT, April 1995. (Published si-
multaneously with the present paper)

Hanrahan R., Daud C., Meiser, K., Peterson J. Software En-
gineering Environment Technology Report, Software Tech-
nology Support Center, OO-ALC/TISE, Hill AFB, Utah, April
1994.

Shlaer S., Mellor S.J. Object Lifecycles, Modeling the World
in States, Yourdon Press, 1992.

Sutton, S., personal communication, November 29, 1994.
Trimble J. (ed.), STARS Program History 1983-1993 Ver-
sion 1.1, available from the STARS Program Office.

Young, P.S., R.S. Taylor, Team-Oriented Process Pro-
gramming, UCI Technical Report 91-68, Department of In-
formation and Computer Science, University of California,
Irvine, CA, August 28, 1991.

AUTHOR BIOGRAPHIES
Dr. Richard L. Randall

Dr. Randall is currently working on the ARPA STARS program as the on-site
lead for the Air Force/STARS Demonstration Project at Peterson AFB, Colorado. He
provides consultation to the Air Force on megaprogramming technology transition is-
sues and on long-range strategies for enabling a future product-line for the Space
and Warning Systems Center. His area of technical focus on the Demo Project is the
integration of the Demo Project Software Engineering Environment - notably the as-
pects dealing with the organization’s process and artifact management.

Dr. Randall's research interests include software engineering methods and
integrated project support environments (IPSEs). He has over 25 years of experience
in all aspects of software engineering for large real-time systems on projects such as
Gemini, Apollo, Safeguard, Sea Nymph, and B2. During this time, he has focused on
the integration of methods and tools into the software process, and he has played
lead role in various division-level software and systems engineering steering groups.

Dr. Randall received a BS in Mathematics from MIT and a PhD in Computer
Science from UCSD. He is a member of the IEEE Computer Society and the ACM.

Mr. William H. Ett

Mr. Ett is currently working on the ARPA STARS Program, where he specializes
in the development and transition of techniques for defining enactable processes,
and the specification, design and development of automated process support appli-
cations. Mr. Ett's accomplishments include the design of the Cleanroom Engineering
Process Assistant, the co-invention of the ProjectCatalyst front end and its generic
process programming paradigm, the design of the initial LORAL STARS process
support environment, and the co-development of the “STARS/SEI Process Definition
Information Organizer Templates.” Mr. Ett has over twenty years of experience in the
development and delivery of government and military information processing and real-
time systems.

Mr. Ett's research interests include the design and development of process
support technology and tools to assist organizations in benefiting from process-driven
software development, as well as the application of artificial intelligence techniques to
support systems and software engineering.

Mr. Ett received a BS in Computer Science from the University of Maryland. He
has also done graduate work in Computer Science and Operations Research.

APPENDIX: HisTORY OF PSE EVOLUTION

As a supplement to the main paper, this appendix provides a brief examination
of the evolutionary path to the current Process Support Environment (PSE) and our
conceptual model of the Process Support Environment overlay SEE layer. This will
aid in understanding the description of the Demonstration Project PSE described in

Section 4 of the paper.

We begin by discussing three predecessor STARS implementations, and we
conclude by describing a representative contrasting approach being pursued by the
Arcadia Project.

PREDECESSOR STARS IMPLEMENTATIONS

Starting in 1990, STARS evaluated tools and prototyped several environments
and applications to support the process-driven development of software. This evolu-
tion was carried out in three phases:

. Development of a prototype Process Support System (PSS) to guide a
project team in following a defined process. This phase led to the im-
plementation of the Cleanroom Engineering Process Assistant (CEPA)
[ETT-92]

o Development of a prototype PSS, using an interpretative process design
tool to implement process support applications. This phase led to the
implementation of the Process Weaver CEPA prototype [ETT1-94]

o Design and development of a pilot Process Support Environment (PSE),
integrating the process definition, design, enactment and measurement
capabilities developed on STARS [ETT2-94]. This pilot was actually used
on the Air Force/STARS Demonstration Project. The resulting experi-
ence identified several required improvements, leading to the current
Demonstration Project PSE.

The first two phases provided the user organizations with Process Support
Systems - i.e., end-user systems that guided and supported practitioners in executing
the organization’s process. Process engineering activities (such as process defini-
tion and process programming) were performed by the PSS developers.

The third phase, yielding the current Air Force/STARS Demonstration Project
toolset, provided the user organization with a full Process Support Environment (PSE)
- which allowed the organization both to perform its own process engineering activi-
ties and to produce and evolve its own PSS as well.

34

We now believe the ability for an organization to perform a full range of process
engineering activities is essential to megaprogramming.

CLEANROOM ENGINEERING PROCESS ASSISTANT (90-94)

Implementing the CEPA prototype provided the Loral STARS team with its first
experience in process integration. CEPA was implemented using the Kl Shell”. KI
Shell provided a method editor to support the design of a process support system,
and provided extensive library services to support the implementation of the final sys-
tem using the C programming language. The resulting CEPA process support sys-
tem was not easily modifiable, as the work flow for the process was embedded in the
application. Thus, system modification and re-compilation was required to make a
change to the system. Where processes are well understood and do not have a great
deal of volatility, implementing the process support system as a compiler has per-
formance advantages.

To accommodate changes in the SEE, CEPA routines were designed to invoke
UNIX shell scripts to perform designated functions. These shell scripts could be
modified without affecting the system. Kl Shell supported integration with presenta-
tion and data integration mechanisms. Control integration mechanisms were not
available at the time of CEPA's development. Thus CEPA was not only a process
support system, but -contained several of the capabilities allocated to the Process
Support Environment layer.

Implementation of CEPA required a complete life cycle of software develop-
ment activities from specification through implementation and testing. There are no
short cuts.

The initial CEPA prototype was refined and fielded for use at the US Army's Pi-
catinny Arsenal from 1992 through 1994, where it supported the MBC upgrade project.
CEPA's field test experience demonstrated that process support systems could be
built to guide a team of development engineers through a defined process, while
performing their work.

Although CEPA did meet user's expectations, several issues were identified
from its use:

. The system as implemented had limited scope, and extending the sys-
tem meant additional software design, implementation and testing.

o CEPA had poor facilities for technical task planning and dispatching.
These functions were supported using a project management system,
followed by the use of a spreadsheet program.

o CEPA tasks, once dispatched were impossible to kill, thus the entire
work step sequence for a task had to be walked through its completion,
to delete it.

K| Shell is a registered trademark of UES, Inc. of Dayton, Ohio

Table 1 provides a summary of the Process Support Environment Capabilities
included in CEPA.

PSE Capabilities PSE Tools PSE Integration
e Process Madeling ¢ None « None
¢ Project Planning, Moni- + None + None
toring and Control
¢ Process Performance e Limited e Yes, an editor was provided to
Management add black, state and clear boxes

as required. However, planning
tasks required support external to

the tool.
e Task Execution Support o KI Shell Enactment En- * Yes, the enactment engine man-
gine aged all work flow activities for the
program.
e Process Improvement ¢ KI Shell Instrumentation e Yes, task steps could be instru-
Analysis Facilities mented to collect and post meas-
urement data.
e Process/Artifact State ¢ Kl Shell State Object e Yes, Kl Shell used a frame infor-
Management Manager mation management system to

maintain state and attributes on
all task and data objects.

¢ Collaborative Develop- o Kl Shell Messaging e KI Shell permitted the implemen-
ment Support Services tation of process programs which
supported collaborative develop-
ment.
e C Language Compiler "
Oracle
Table 1: CEPA Process Support Environment Dimensions

PROCESS WEAVER CEPA PILOT (92-93)

Implementing selected key functions of CEPA as Process Weaver cooperative
procedures (or process programs), gave the Loral STARS team experience using an
interpretive work flow management capability. The Process Weaver CEPA prototype
was implemented using Process Weaver's process program development editors,
namely, the cooperative procedure editor and the work context editor. The cooperative
procedure editor permitted a process engineer to define work steps to perform a task
as a petri net. Actions to support petri net processing were implemented using a
script language named CoShell, which provided a LISP-like capability for manipulat-
ing objects in a CoShell program.

Process Weaver's process integration mechanisms permitted the use of con-

trol integration mechanisms, namely HP SoftBench's Broadcast Message Service
(BMS) to support application invocation and transaction message passing, and

36

Weaver BMS, a Process Weaver implementation of BMS written to support the devel-
opment of process programs which support collaborative development. Presentation
integration mechanisms for process programs were managed through the Process
Weaver facilities, while HP SoftBench's presentation integration mechanisms were
provided for SEE engineers to encapsulate applications to be directly invoked from the
SEE or from task work steps.

Process Weaver did enable the suspension or deletion of work tasks without
requiring the work task to be completed.

Although Process Weaver solved a few of the concerns identified during CEPA
use, it did present new issues:

Process programs implemented using the Process Weaver cooperative
procedure editor were easy to develop, and easy to change. However,
change management of these process programs became problematic.
Further, unless the process programs were properly managed, process
practitioners had the ability to modify the process programs.

The Process Weaver facilities available for supporting task planning,
dispatching and monitoring were not effective and had to be managed
outside of the Process Weaver environment.

As in CEPA, process programming of customized applications was re-
quired. The impact of this is that customized software has to be speci-
fied, designed and implemented to support the development of software.

Process State and History is only maintained for local executing task
threads, as opposed to CEPA which provided access to global task state
information to support inter- and intra-task process control.

Table 2 provides a summary of the Process Support Environment Capabilities
included in the Process Weaver CEPA prototype.

PSE Capabilities

PSE Tools

PSE Integration

Process Modeling

None

None

Project Planning, Moni-
toring and Control

Microsoft Project

None. Microsoft Project plans could
be exported as a flat file for use by
Process Weaver.

Process Performance
Management

Limited

None. Task dispatching could be im-
plemented to support Process
Weaver's capabilities. However, plan-
ning and tracking these tasks required
support external to the tool.

Task Execution Support

Process Weaver
Enactment Engine
using the CoShell
interpreter

Yes, the enactment engine managed
all work flow activities for the program.

Process Improvement
Analysis

Kl Shell Instrumen-
tation Facilities

Yes, services were provided to instru-
ment task steps to collect and post
measurement data, or to invoke exter-
nal programs to collect data.

Process/Artifact State
Management

Process Weaver
CoShell Facilities

Yes, Process Weaver maintains local
state data for each process program
(cooperative procedure) launched. Ar-
tifact state information must be pro-
grammed into the process program for
it to be maintained.

Collaborative Develop-
ment Support

Process Weaver
BMS

Process weaver permitted the imple-
mentation of process programs which
supported collaborative development.

PSS Development

Process Weaver
Cooperative Pro-
cedure and Work
Context Editors
(Process Design)

CoShell language
and interpreter

Yes, CoShell is the mechanism for
executing Process Weaver process
programs.

Table 2: Process Weaver CEPA Prototype Process Support Envi-

ronment Dimensions.

PILOT LORAL STARS PROCESS SUPPORT ENVIRONMENT (93-94)

The pilot process support environment was implemented to provide an envi-
ronment to support the activities of the process activity life cycle, namely 1) the specifi-
cation of software processes, 2) the design and implementation of process pro-
grams, 3) the execution of process programs, 4) the collection of measurement data
and 5) the analysis of that data to support process improvement. These activities are
supported by the PSE capabilities introduced in section 3.3

To support Process Modeling and Project Planning, Monitoring and Control, the
STARS-developed Process Engineering and Kernel System (PEAKS)"” was selected.
PEAKS was programmed to respond to control messages sent from either HP Soft-
Bench's BMS or through PEAKS's API. Process state and history information was
maintained by Oracle.

To support Process Performance Management, a new set of capabilities had to
be developed. To satisfy the requirements for this capability set, ProjectCatalyst was
implemented. ProjectCatalyst provided a capability to support the delegation of proc-
esses and the planning, dispatching and tracking of tasks required to support the re-
quirements of a delegated process. ProjectCatalyst permitted technical managers
and task leaders to plan and organize tasks using a spreadsheet paradigm, and to
use this same spreadsheet view to assign, dispatch and track work tasks.

ProjectCatalyst was programmed to both send and receive control messages
from PEAKS via HP SoftBench to enable ProjectCatalyst to query PEAKS about
planned processes and tasks, and to post actual performance data on process and
task status to PEAKS. ProjectCatalyst maintained process and task state and history
data in Oracle. ProjectCatalyst was also programmed to launch process programs
for execution by Process Weaver, where ProjectCatalyst controlled the work to be
managed by Process Weaver. ProjectCatalyst made use of Process Weaver's proc-
ess integration mechanisms for launching work tasks and passing control mes-
sages between Process Weaver users.

To support Task Execution Support, Process Weaver was selected. As stated
above, Process Weaver was interfaced with ProjectCatalyst, where ProjectCatalyst
controlled the invocation of Process Weaver process programs and Process Weaver
controlled their execution. Process programs could be instrumented to invoke SEE
tools and services, collect measurements or call measurement collection agents,
and to manage artifacts.

No capabilities were selected to support Process Improvement Analysis for the
Pilot PSE, other than measurement data collection.

The Pilot Loral STARS PSE included several unique features:

. It made use of a generic process programming paradigm for imple-
menting process programs. This reduced the need for customized
process programming and provided greater task management flexibility
for Process Performance Management.

. It provided a flexible mechanism for planning, tracking, dispatching, and
canceling tasks.

o It provided consistent process state and history data among applications
- made possible through data integration using an Oracle database.

From this first integration attempt, and from the essential usage experience
that resulted from trial usage on the Air Force/STARS Demonstration Project, several

'8 Formerly known as Software Process Management System (SPMS); PEAKS is ccPE's commercial name for the product.

39

issues were

identified that needed to be addressed. Based on joint discussions of

priorities, some of these issues (identified in the following list) were targeted for a
major upgrade - leading to the current Demonstration Project PSE:

Table
Capabilities.

Integration between PEAKS and ProjectCatalyst needed to be improved
to reduce the amount of manual work required to keep the two environ-
ments in agreement. Although there were provisions for automatic re-
porting from ProjectCatalyst back to PEAKS, there were no provisions for
automatically initializing ProjectCatalyst process information from the
PEAKS database.

(The integration is substantially improved in the current version. PEAKS
exports plan data and ProjectCatalyst initializes its database accord-
ingly.)

Architecture services need to be developed to interface with heterogene-
ous SEEs to access their data and employ their services. Standard pro-
grams for providing wrappers around said services are required to fa-
cilitate application program integration into process program workflow
activities. Basic problems also lie in data/file/program object ownership
and poorly understood access protocols.

Data predetermination for tasks is not sensible. The task planner is
forced to anticipate data requirements to support the task prior to it being
dispatched. Data objects must be assignable, either prior to task dis-
patching or during task execution. Further, the task performer must have
access to all relevant data objects to support task work.

Execution requirements for PSE components were too complex for the
average user. User front-end programs are required to be developed to
perform all housekeeping chores for PSE users.

(A “front-end” script has now been provided to handle this automatically.)

PSE administration is enormously complex. PSE administration pro-
grams are required to ease the burden on site personnel for both PSE
installation and PSE administration.

(A set of administrative scripts is now available that greatly simplifies
administration.)

3 provides a summary of the Pilot Loral STARS Process Environment

PSE Capabilities

PSE Tools

PSE Integration

Process Model-
ing

PEAKS

Partially. Manual binding of plan process
ids with ProjectCatalyst process pages.
Automatic data reporting once binding was
established through BMS.

Project Plan-
ning, Monitoring
and Control

PEAKS
CAT/Compass
(Eliminated)

Partially. CAT/COMPASS was integrated
with PEAKS to support PEAKS Plan
Scheduling and status data exchange
through BMS. PEAKS later subsumed re-
quired CAT/COMPASS functionality.

Process Per-
formance Man-
agement

ProjectCatalyst Proto-
type

Partially. Mechanism for manually binding
PEAKS process ids with ProjectCatalyst
process pages. Automatic data reporting
once binding was established through
BMS. Mechanism for invoking Process
Weaver process programs.

Task Execution
Support

Process Weaver En-
actment Engine using
the CoShell Inter-
preter

Yes, the enactment engine managed all
work flow activities for the program.

Process Im-
provement
Analysis

Process Weaver
CoShell Facilities
Amadeus Measure-
ment System (AMS)
PEAKS Measurement
Quality Facility (MQF)

Yes, services were provided to instrument
task steps to collect and post measure-
ment data, or to invoke external programs
to collect data, such as the Amadeus
Measurement System or the PEAKS MQF.

Process/Artifact
State Manage-
ment

Oracle

Process Weaver
CoShell Facilities

Yes, Oracle was used as a persistent state
object store for both PEAKS and Pro-
jectCatalyst.

Process Weaver maintains local state data
for each process program (cooperative pro-
cedure) launched. Artifact state informa-
tion must be programmed into the process
program for it to be maintained.

Collaborative
Development

Process Weaver BMS

Process Weaver permitted the implementa-
tion of process programs which supported

Support collaborative development.
o PSS Develop- Process Weaver Co- Yes. The Process Weaver editors support

ment operative Procedure code and go development of process pro-
and Work Context grams.
Editors (Process De-
sign)
CoShell fanguage
and interpreter

Table 3: Pilot Loral STARS Process Support Environment Dimen-

sions.

A CONTRASTING APPROACH

ARCADIA PROCESS SUPPORT ENVIRONMENT

The Arcadia Consortium has developed a unique set of capabilities to provide
process integration capabilities for their SEE development efforts, as well as provide
capabilities to develop process programs. We have chosen to discuss Arcadia's
Process Support Environment capabilities, because of their natural fit within the ca-
pability sets we have defined for characterizing a Process Support Environment layer.

To support Process Modeling, a tool called Teamware [Young91] was devel-
oped. Teamware is also a process specification and programming system, but could
be used to support the development of process models for implementation as
APPL/A programs.

To support Project Planning, Monitoring and Control, a tool called ManLobbi
was developed to support project planning. ManLobbi also supports the capabilities
of Process Performance Management, by supporting detailed task planning and task
dispatching.[Sutton94].

To support Task Execution Support, process programs must be implemented
in the APPL/A, a capability for precompiling APPL/A process programs into Ada. The
resulting compiled Ada programs support process program execution.

As uniform maintenance of process state and history is important to support
and coordinate the execution of many different process programs, Arcadia developed
a capability called the Processwall Process State Server [Heimbigner95] to provide for
the storage of process states, as well as for operations for defining and manipulating
the structures of those states.

This discussion does not include all of the components of the Arcadia SEE, but
addresses the relevant key components. It should be noted that these components
are the result of University research and as such are not commercially available.

Table 4 provides a summary of the Process Support Environment Capabilities
of the Arcadia SEE.

PSE Capabilities

PSE Tools

PSE Integration

Process Modeling

Teamware

None with other Arcadia process
tools.

Project Planning, Moni-
toring and Control

ManLobbi (developed
for APPL/A use)

Teamware

ManLobbi - Yes. Integrated to
capture status from executing
process programs.

Process Performance
Management

ManlLobbi

Yes. Integrated to support the
dispatching of tasks and the cap-
ture of status from executing
process programs.

Task Execution Support

APPL/A Process Pro-
grams

Yes. APPL/A process programs
employ SEE presentation, data
and control integration mecha-
nisms.

Process Improvement
Analysis

Amadeus Measurement
System

Yes. APPL/A programs can be in-
strumented to invoke external
programs to collect and post
data.

Process/Artifact State
Management

Managed within
APPL/A applications
using either TRITON or
ProcessWall.

Yes. APPL/A programs can be
programmed to employ the serv-
ices of an abject manager
(TRITON) or ProcessWall to main-
tain process state data.

Collaborative Develop-
ment Support

Process Weaver BMS

Process weaver permitted the im-
plementation of process programs
which supported collaborative de-
velopment.

PSS Development

Teamware (process de-
sign)

APPL/A (process pro-
gram development)

Teamware - Yes. Supports code
and go process programming.

APPL/A - No.

Table 4:

Arcadia Process Support Environment Dimen-
sions.

weibold SHVY1S/VdHV

Swid)sAs jesopa4d

walo™

13 Wel||ip
llepuey preyory “JQ

G661 udy |} ‘Aepsen]
S8In10BlYdIY - 2 Morl |
aoualejuon Abojouyosa | siremyog |enuuy yi/

SjuswuodIAuUg buneaulbug a1em)os
o1elboaju| 0} ssoo0.1d Buisn

¢ - W3/llepuey G661 udy LI

UOISNJOUO)) e
90ualadxg 3Sd SHYL1S/00104 JIy e
uonelbslu] 333 peseyg-SSa00id e
IX31UOY) o

m C _ _H.: O ﬁwim |esopay DJ

€ - 13/llepuey G661 judy i

UOTJRPUNO,] SUIT-10NPOI] « oudLIddxH 109f01d 189y «
uorjedrjddy Surjiop « A3o[ouyda], paoueyu e

2INONNSBIJU [BINJOATYIIY o %wowoﬁouh XIV/OSI
osnIadxH Uretwo(J e AZ0TOUYIIL, SYV.LS+
AZ0TOUYIQL, SMS+

drystoupmd owiaq SYVILS/AV Seio

¥ - na/epuey G661 udy L1

yoddng pejewolny e
SS9001 o

asnay olIoadg-urewo(] e

.10} siseq

SWIRYSAS |elopad

9INJ081IY2JY BUIT-10NPOd =walom

S - B3a/llepuey G661 udy 11

SHYv3d

SAHVId
1Vaoid ssedwod/1 VO

(leneapp sse001d
1sAjeieDiosfoid

OAWO [euoliey
OAWD Wl |

SHV3d
snepewy

$|00] UNg
laxewewel

e

vaos

loyewsawel

Ajpes™ | 3gj001

(NIAHomwes |
as0y

104

SAVA 3IvS
xedy s|oc] 20IY

333 109loid owa(Ao

9 - R3/llepuey

G661 MdY LI

[ona1-uonedijddy

[
D
e
o 5 G
< c
o | m S2Q
clm =Ea
. OCoa |
0P Se g
e|a 2%,
4 B $9559001 s nk
595580014 Bunesuibug « 214 . d 33S o= o
‘susLOdWOs) UOWWO w Spouie uoneibolu| « e
! AWOY o ‘S19S]00 | ‘8INj0alyoIy Q55
Sjepol urewod s, 850
coa
we's

|[oA®T]-ulewoQ

Josse Buuesuibus Jo uoljedidde
pue ‘@doueusiuiew ‘uoljeald ay) 1o}
2ouBjSISSE pajewlolne sepinold

IVOS

SAVISHV

auI7-1oNpold J3S 8yl

swdjsAs [esapad

Twaon

L - 13/ilepuey G661k [udy LI

43S

33S 9yl bulwwelboidebe =Tmian

8 - W3/Ilepuey G661k Mdy LI

sioAeT [einjodlyoly 338 STEion

6 - #3/fepuey G661 |udy L1

lesulbug
43S

19S(pug T i

sbuipuig
s “ - JOBJIY 001
Ajeuonound 338
UBAII(-SS800I
: " 88900l1d
s .uoneziueblp
JUBLIUOIAUS BuLieauiBUS SIemijos me%wmw

R uonelbolu| 335/SS8001d EERIEeN

01 - #3/lepuey G661 udy LI

.................. D R R I LI T T N T N I T RS

1eauibu
Juewsaoidwi ssesoid uoddns o} BleQ oL3

A $5820.d

A ‘»

3Sd 01 [eulsixg sadlneg

:S8ie1S ejluy
: : pue speyuy

isuonoeld
ofoid

snieispse

pesT Mse]

.. ..mamwm lssuibuz
JusweBeuey $5900.d
[eoluyoe |
nosloid

......... R EIEMe
UBALQ-S9

S90BLIBIU| @ 8INIONIS 13Sd =Eia

Ll - H3/epuey

G661 Udy L1

Jesuibug
81EMY0S

Juswiuoiinug poddng ssedoid

SUORON.ISU| MseL

Aepunog 354

suonondisu

suofonlsy| yse | se) Aeidsig

suononJsu| Xse M Bl1eY/1senbey

suolonJIsu| Jse |
ensllaysenbey

suoljonJsy|
yse] Aeldsiq

AL veis
yse| 1s0d

owli] Uels
)Se] 1S0d

suononisu| g
wswiubissy
Ae|dsig

uoneooedg
xog yoeld
8jepliep

g doig

uoljesiyoedg
Xog Xoe|g
auled

'z dais

Ai0)sIH
osuodsay
/shinwiig
aledsld
'} doig

uinjey

HEIS

44S 9y} JO 1S8Yy 9yl
UM 3Sd oyl buneibayul

SwiaysAs [esopod

BA\4{-"m

2l - n3a/lepuey oedg G661 [Mdy LI

Xog Joe|g
peyepd

lssuibug sebueyp
alemyos Buip3

\

eye|dwe j
xog Yor|g

ole|dws | xog v_o.m_m
anelley/isenbay

101p3
xog yoe|g
BNOAU|

.......... Arepunog 354

loup3
xog >oe|g

soje|dwe | xog 3oe|g
eAsliloHisenbay

suolonlisuy| g
Juswubissy
Aeldsig

AloisiH
osuodsay

uopeolioadg uolyeoljioeds

Xog 3oe|g Xog yoejq /shinuing
alepllepn auleQq oledaiyd
‘g daig ¢ daig i} daig

uinje
d uels

SOV (PJUOD) 33S BU} JO 1S8Y DYl woseseere
3 UM 3Sd ay) Bunesbayu Tvao

€1 - B3/lepuey

G661} HdY LI

~
‘. \
oo , \ Buipuig
s om._/ Bn}o . ,’ spoyleN 100L puE By
. ~ .
. ari rt<r.“/< ‘N L UoEO0A] _oo._.,. joesns,3l

N \UOlENUE]SU| WeiBoid SS800id

S)oejily pue S|00| 0} bulpuld

SwAsAs |elapaq

Twalon

1 - n3/lepuey G661 udy LI

Hoddng parewiomy
[EOUBJ = =~ = - = 1Koy

:om:umxw -
JSel

9DUBULIOJIDJ SSIDOIJ

SO w@mmD ool

. a
1IN S PpaYdS ‘10qe]

3UI[JOQU0))
‘BurroyruoN

|

| SISA[EU phiouy
Buruuerg yusurasorduay | Fo 0
P 559001]]177%

[NPoYoS USALI(J-SS300I]

E]
t*

Y
_,Bi

Inpaydg
1easr-dog,

SuipPpoy
§59001]

3Sd IVOS 8uL e

S| - B3/lepuey G661 judy LI

ABejesis dn-pjing [eluswalou] :9|nJ [elousy) —
90Uo Je seale 108foid |e 108k seyoroidde maN —
abueyo [eluawepuny Jo 10edwi aAisealad By e

Bupjeuspun snoiigqwe uy :9Sd e buipjing e

I[_JOAQD - SUOSSOT e

9t - na/lepuey G661 1dy LI

Ao)sodal a)els ssao04d [BIUSD Y POJUBAN e
Aloyisodal 10.jiUe [BIJUSD \f (POJUBAA e

S185]00} [enpiAipul AQ Juswsbeuew joejiLe JIYLOUO|N e
anssli uoleibolul anisenlad e :saseqelep a|diyN|\ o
Alreuonouny J@ys-eyi-4Jo, Buisn JO SUOD pue SOId e
ABojouyoa) Buibessaw jseopeoIq YIIM SBNSS|
PUNOJUOD UBD Saoualayip wiojle|d sjigns e

001 ‘uoneibsaiul aiinbal swbipeied e

AT /v uoneibalu| - SUOSSOT O

Ll - n3a/lepuey G661} |Hdy |

ssoo0.d 01 aisemdnolb, BUIA] e
solausb yum Buiwwelbold ssed0id e
190yspealds Aq juswabeuew YSe| e
Buiuue|d UBALIP-SSB20Id e

SUOIJBAOUU| JSd - SUOSSOT &2ia

81 - H3/llepuey G661 Udy L

uolneziplepuels pue xy bulobuo ul sjedioiied ApAnoy —
SsaAI}08lqo 108loid ows(jeninw poddns 0] enunuo) —
sol10}Isodal 8)e1S SS8201d pue 10.lilY 10} S|dY dojeasq —
S|9poWl 35d sulisy —
sue|d e
snjelg uaiing e
Awouoxe] pue sjppow bupiom padojpaaq —
laAe| uoneinsdeous 394 1o souepodwi paziuboosy —
aousliadxa abesn pue JuswdojaAsp |eonoeld —
uoljewolne ssaosolid Jo Buipueisiepun Buliniey :synsey e

uoIsn|ouo e

